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Abstract—Recommendation models utilizing unique identities
(IDs) to represent distinct users and items have dominated the
recommender systems literature for over a decade. Since multi-
modal content of items (e.g., texts and images) and knowledge
graphs (KGs) may reflect the interaction-related users’ pref-
erences and items’ characteristics, they have been utilized as
useful side information to further improve the recommendation
quality. However, the success of such methods often limits to
either warm-start or strict cold-start item recommendation in
which some items neither appear in the training data nor have
any interactions in the test stage: (1) Some fail to learn the
embedding of a strict cold-start item since side information
is only utilized to enhance the warm-start ID representations;
(2) The others deteriorate the performance of warm-start rec-
ommendation since unrelated multi-modal content or entities
in KGs may blur the final representations. In this paper, we
propose a unified framework incorporating multi-modal content
of items and KGs to effectively solve both strict cold-start and
warm-start recommendation termed Firzen, which extracts the
user-item collaborative information over frozen heterogeneous
graph (collaborative knowledge graph), and exploits the item-
item semantic structures and user-user behavioral association
over frozen homogeneous graphs (item-item relation graph and
user-user co-occurrence graph). Furthermore, we build four
unified strict cold-start evaluation benchmarks based on publicly
available Amazon datasets and a real-world industrial dataset
from Weixin Channels via rearranging the interaction data and
constructing KGs. Extensive empirical results demonstrate that
our model yields significant improvements for strict cold-start
recommendation and outperforms or matches the state-of-the-art
performance in the warm-start scenario. The code is available at
https://github.com/PKU-ICST-MIPL/Firzen ICDE2024.

Index Terms—Strict cold-start item recommendation, warm-
start item recommendation, multi-modal recommendation,
knowledge-aware recommendation

*Corresponding author.

I. INTRODUCTION

Recommender systems, which aim at suggesting items to
users given historical user-item interactions, have been playing
a crucial role for mitigating information overload in many
online services, ranging from video-sharing cites [1], online
advertising [2] and E-commerce platforms [3]. The modern
recommendation models often use unique identities (IDs) to
represent users and items, which are subsequently converted
to embedding vectors as learnable parameters. These ID-based
models have dominated the recommender system field for over
a decade, especially in the warm-start scenarios when users
and items have sufficient interaction data [4]–[7].

In recent years, to explore the rich multi-modal content of
items and the fruitful facts contained in the knowledge graphs
(KGs), some works have studied effective means to integrate
such side information of items into the traditional user-item
recommendation paradigm. On one hand, multi-modal content
of items, such as visual and textual features of items, may
reflect the items’ characteristics and thus users’ preferences
from different perspectives [8]–[10]. On the other hand, KGs,
serving as useful external sources, can encode additional item-
wise semantic association to enhance the user and item rep-
resentations [11], [11]–[19]. Moreover, [20] represents multi-
modal content as nodes and integrate them into collaborative
KGs for recommendation.

As shown in Fig. 1, though existing recommendation meth-
ods incorporating either multi-modal content of items or KGs
can achieve relatively superior accuracy, they are confronted
with the trade-off issue. It prevents recommendation models
from achieving state-of-the-art performance in both warm-start
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Fig. 1. Performance comparison (MRR@20) of Firzen and existing methods
on Amazon Beauty dataset for both strict cold-start and warm-start scenarios.

and strict cold-start item recommendation in which some items
neither appear in the training data nor have any interactions
in the test stage. (1) Strong dependence on interaction-
based supervision: Some methods incorporate side informa-
tion to enhance the learning of ID embeddings of warm-start
items. However, strict cold-start items fail to learn feasible
representations at the training phase since supervision (i.e.,
interaction data) is missing. Worse still, unlike normal cold-
start items that have user-item link at the test phase, strict
ones even cannot obtain information from well-trained user
representations. Consequently, such methods (e.g., MMSSL,
SGL) underperform in the strict cold-start scenario. (2) Non-
robustness to irrelevant content features: The others rep-
resent items from their content features which alleviate the
dependency on the historical interactions, benefiting the strict
cold-start items. However, users’ preferences on items may be
reflected on different side information. Incorporating all multi-
modal content and entities in KGs irrelevant to interactions
may hurt the performance of warm-start item recommendation.
Thus, such methods (e.g., KGAT, VBPR) underperform in the
warm-start scenario. For instance, as shown in Fig. 2, a user
interacted with the movie The Shawshank Redemption may
be attracted by the movie poster, story line or just the director
Frank Darabont. As a consequence, the failure to collaborate
the interaction and content features in a feasible manner
brings an obstacle to balancing warm-start and strict cold-start.

In light of the aforementioned limitations and challenges,
we develop a unified framework incorporating multi-modal
content of items and KGs for handling both strict cold-start
and warm-start item recommendation, termed Firzen, which
involves Side information-Aware Heterogeneous Graph
Learning (SAHGL) and Modality-Specific Homogeneous
Graph Learning (MSHGL). More specifically, SAHGL ex-
ploits behavior-aware, modality-aware and knowledge-aware
user and item representations on the constructed heterogeneous
graph, i.e., collaborative knowledge graph. Different from
[21], the heterogeneous graphs are frozen without random
dropout during the training phase. MSHGL first builds the
homogeneous graphs, including modality-specific item-item
relation graphs according to the modality information and a

Fig. 2. Illustrated example of users’ preferences for items reflected on the
visual content, textual content and knowledge graphs.

user-user co-occurrence graph based on the behavioral records.
Different from [22], the homogeneous graphs are frozen with-
out updating during the training phase. Then the information
is propagated and aggregated among items and users respec-
tively, to exploit the item-item semantic structure and user-user
preference association. To evaluate models using multiple side
information on strict cold-start item recommendation, we build
four benchmarks via rearranging the raw interaction data and
constructing KGs based on Amazon datasets and a real-world
industrial dataset Weixin-Sports. Evaluation results show that
Firzen can significantly improve the performance of strict cold-
start recommendation while preserving competitive in warm-
start scenario.

To summarize, we make the following contributions:
(1) We propose a unified framework that can be trained
effectively on warm-start items and seamlessly applied to strict
cold-start items during inference phase.
(2) We develop a side information-aware user-item message
passing mechanism based on frozen heterogeneous graph to
encode the collaborative signals. We design a modality-specific
item-item and user-user message passing mechanism based on
frozen homogeneous graphs to exploit the internal relations
within items and users, respectively.
(3) We build four strict cold-start benchmarks for evaluating
recommendation methods using multiple side information.
Extensive experiments on Amazon datasets and the real-world
industrial dataset Weixin-Sports demonstrate that our proposed
framework can significantly improve the performance on strict
cold-start while preserving warm-start accuracy.

II. PRELIMINARIES

Consider a recommendation dataset consisting of interaction
records between a set U of users and a set I of items.
We define the user-item interaction matrix Y to represent
the interaction behaviors of users over different items (e.g.,
purchase, watch, review and click). In matrix Y , the element



yu,i = 1 given that the user u has interacted with item
i and yi,j = 0, otherwise. The goal of classic warm-start
recommendation is to predict preferred items exist in the
original interaction matrix Y for users seen during training,
while the normal cold-start item recommendation refers to
predicting the preferred items unseen during training but have
interactions at the test stage [23], as shown in Fig. 3 (a).

Strict cold-start is an extreme scenario of the normal cold-
start, i.e., the strict cold-start items that neither appear in
the training data nor have any interactions at the test stage
[23], as shown in Fig. 3 (b). The significant differences lie on
whether interaction records exist at the test stage, where
normal cold-start items can explicitly link to users and thus
can obtain information from well-trained user embeddings to
obtain feasible representations.

User-Item Interaction Graph. Based on the matrix Y ,
we first construct the user-item interaction graph Ginter =
{Vinter, Einter}, where the node set Vinter = U ∪ I and edge
(u, i) is generated if yu,i = 1.

Knowledge Graph. Let Gknow = {(h, r, t)|h, t ∈
Vknow, r ∈ Eknow} represent the knowledge graph which
organizes external item attributes with different types of
entities Vknow and relationships Eknow. Specifically, each
triplet (h, r, t) characterizes the semantic association between
the head entity h and the tail entity t. Such information
incorporates fruitful external facts associated with items and
connections among items to improve the modeling of users’
underlying preferences for recommendation.

Task Formulation. We formally describe our task as
follows. Input: user-item interaction data Ginter = {V, E},
item knowledge graph data Gknow = {(h, r, t)}, and multi-
modal data of items FI . Output: the learned unified function
Fun = (u, v|Ginter,Gknow,FI ; θ) that forecasts the warm-
start items from Iwarm and strict cold-start items from Icold
that user u ∈ U would like to interact with, respectively. θ
denotes the model parameters.

III. METHODOLOGY

A. Overview

Our proposed Firzen is a unified learning framework col-
laborating multi-modal content and KGs to improve the
performance of strict cold-start item recommendation while
maintaining competitive results on warm-start item recommen-
dation. Fig. 4 depicts the overall model flow of Firzen which
consists of three main components. The first component is
Frozen Graph Construction, a pre-processing component to
build the frozen graphs utilized in the following components.
The second component is Side information-Aware Heteroge-
neous Graph Learning (SAHGL), a component for extract-
ing user-item collaborative signals from behaviors, multi-
modal content and KGs, respectively. The third component is
Modality-Specific Homogeneous Graph Learning (MSHGL),
a component for propagating information from warm-start to
both strict cold-start and warm-start items based on the item-
item semantic structures of different modalities, and among
users based on the user-user co-occurrence relation.

(a) warm-start and normal item cold-
start scenarios

(b) warm-start and strict item cold-
start scenarios

Fig. 3. Warm-start, normal item cold-start and strict item cold-start scenarios.
The filled and diagonal blocks indicate that there is an interaction record
between the user and item at the training and inference phase, respectively.

B. Frozen Graph Construction

1) Collaborative Knowledge Graph. To facilitate modeling
behavior-aware and knowledge-aware user/item representa-
tions, we follow the definition in [11] to build collabora-
tive knowledge graph that encodes user behaviors and item
knowledge as a unified relational graph. First, each edge in
the user-item interaction graph Ginter is represented as a
triplet (u, Interact, i). Based on the item-entity alignment,
Ginter is integrated with Gknow as a unified collaborative
knowledge graph Gck = {(h, r, t)|h, t ∈ V ′

, r ∈ E ′}, where
V ′

= Vknow ∪ Vinter and E ′
= Eknow ∪ Interact.

2) Modality-Specific Item-Item Relation Graph. Motivated
by the success of item-item graph in multi-modal recom-
mendation [22], [24], [25], we propose to introduce item-
item graphs to bridge the gap between strict cold-start and
warm-start items while preserving the performance of warm-
start recommendation. The advantages are two-folds. On one
hand, it can exploit the latent item content semantic from
the item-item structure based on the similarities of items’
multi-modal features. On the other hand, it can propagate
the collaborative signals from warm-start items to strict cold-
start items, boosting the recommendation performance of strict
cold-start scenario.

As different side information can reflect different charac-
teristics of items, we construct modality-specific item-item
relation graph represented by the adjacency matrix Gm

i−i

for each modality m. Specifically, we calculate the cosine
similarities Gm

i−i(a, b) for a-th item and b-th item on their
pre-calculated raw features of side information fm

a and fm
b :

Gm
i−i(a, b) =

fm
a (fm

b )T

||fm
a ||2||fm

b ||2
. (1)

Then we utilize kNN sparsification [26] to convert similarity
matrix Gm

i−i into an unweighted matrix. For each item a, we
only keep the top-K similar items connected to a:

G̃m
i−i(a, b) =

{
1, if Gm

i−i(a, b) ∈ topK(Gm
i−i(a))

0, otherwise.
(2)

where each element is either 0 or 1, with 1 denoting the se-
mantic connection between the two items. We then normalize



Fig. 4. The model flow of the proposed Firzen architecture. The KGs, user-item interaction graph and multi-modal content are utilized to construct frozen
graphs. Then the graphs together with the initial user/item/entity ID embeddings and multi-modal features are fed into SAHGL and MSHGL in succession to
obtain final representations. λk, λm represent the importance of knowledge-aware and modality-aware representations, respectively.

G̃m
i−i to build the final adjacency matrix Ǧm

i−i:

Ǧm
i−i = (Dm)−

1
2 G̃m

i−i(D
m)−

1
2 , (3)

where Dm denotes the diagonal degree matrix of G̃m
i−i. We

consider textual and visual modalities M = {text, image} in
our paper and then we obtain textual-based item-item relation
graph Ǧtext

i−i and visual-based item-item relation graph Ǧimage
i−i .

In the training phase, the item-item graph is built on all warm-
start items, while in the inference phase, the item-item graph
is expanded to built on all items, including warm-start items
and strict cold-start items.

3) User-User Co-occurrence Graph. As users who have
interacted with similar items often have similar preferences,
we also build user-user co-occurrence graph represented by the
adjacency matrix Gu−u to learn the internal relations between
users. Specifically, for each user u ∈ U , we retain top-K users
with the highest number of commonly interacted items [25]:

G̃u−u(a, b) =

{
Gu−u(a, b), if Gu−u(a, b) ∈ topK(Gu−u(a))

0, otherwise.
(4)

where Gu−u(a, b) denotes the number of commonly interacted
items for user a and b.

C. Side information-Aware Heterogeneous Graph Learning

Inspired by the relative superiority of recommendation
models incorporating side information in strict cold-start sce-
nario and general collaborative filtering models in warm-start
scenario, we first design three modules to encode behavior-
aware, knowledge-aware and modality-aware user preferences
and item content, respectively

1) Behavior-aware Graph Convolution. Since graph-based
collaborative filtering models (e.g., LightGCN [6]) can per-
form well in warm-start item recommendation, we first build
our encoder upon the graph neural network for recursive
message passing over the user-item interaction graph Ginter

to explore the high-order collaborative effects without incor-
porating items’ multiple side information. For layer l, the user
and item embeddings are formulated as follows:

el+1
u =

∑
i∈Nu

eli√
|Nu|

, (5)

el+1
i =

∑
u∈Ni

elu√
|Ni|

, (6)

where Nu,Ni denote the neighborhood sets of user u and item
i in Ginter, respectively. We initialize e0u and e0i by Xaiver
uniform initialization. In the multi-layer GNNs, we utilize
mean-pooling to aggregate layer-wise embeddings and obtain
the final behavior-aware user embeddings: ẽu =

∑L
l=0

elu
L , and

item embeddings: ẽi =
∑L

l=0
eli
L , where L denotes the number

of GNN layers. Note that there is no edge connected to strict
cold-start items in Ginter, and thus after the behavior-aware
graph convolution, the embeddings of strict cold-start items
are zero vectors, same as skipping the collaborative filtering
module based on interaction record.

2) Modality-aware Graph Convolution. In order to excavate
modality-specific user preferences and item characteristics, we
first project raw multi-modal features into the interaction-
related multi-modal features and then aggregate over user-item
interactions, computed as:

xm
u =

∑
i∈Nu

Linear(fm
i )√

|Nu|
, (7)

xm
i =

∑
u∈Ni

xm
u√
|Ni|

, (8)

where Linear(·) is a fully-connected layer with dropout [27]
to project items’ raw multi-modal features into the interaction-
aware vector space.



3) Knowledge-aware Graph Attention. We build our mes-
sage aggregation mechanism among users, items and the con-
nected entities in Gknow, for generating knowledge-aware user
embeddings and item embeddings based on the heterogeneous
attentive aggregator [11]. Specifically, we employ knowledge-
aware attention to aggregate the neighborhood information on
Gck, shown as follows:

xNh
=

∑
(h,r,t)∈Nh

α(h, r, t)xt, (9)

α(h, r, t) =
exp(π(h, r, t))∑

(h,r′ ,t′ )∈Nh
exp(π(h, r′ , t′))

, (10)

π(h, r, t) = (Wrxt)
T tanh(Wrxh + xr)), (11)

where Nh = {(h, r, t)|(h, r, t) ∈ Gck} denotes the ego-
network [28] consisting of a head entity h and the set of
triplets connected to h. We initialize xh and xt by Xaiver
uniform initialization. Note that h can be arbitrary entity in
Gck, including users, items and ordinary entities incorporated
by the external KG Gknow. When h represents user u or item
i, the relationship between the head entity embedding xh and
initialized user/item id embedding e0u and e0i is summarized
as:

xh =

{
e0u, when h = u ∈ U
e0i , when h = i ∈ I, (12)

After obtaining the ego-network representations xNh
, we then

aggregate xNh
with the entity representations via the bi-

interaction aggregator:

xknow
h = LeakyReLU(W1(xh + xNh

))+

LeakyReLU(W2(xh ⊙ xNh
))

(13)

where W1,W2 denote the trainable weight matrices and ⊙ is
the element-wise product.

4) Importance-aware Information Fusion. After obtain-
ing behavior-aware, knowledge-aware and modality-aware
user/item embeddings, we then fuse them to obtain the overall
representations, which can reflect the interaction-related user
preference and item characteristics based on external knowl-
edge and different modalities:

eu = ẽu + λk · xknow
u + λm · (βt · xtext

u + βi · ximage
u ), (14)

ei = ẽi + λk · xknow
i + λm · (βt · xtext

i + βi · ximage
i ), (15)

where λk, λm control the ratio of behavior-aware, knowledge-
aware and modality-aware representations. βt and βi denote
the relative importance of textual and visual information that
are optimized during the training phase.

The importance of different modalities lies on the con-
tribution to capturing and predicting users’ preferences and
behaviors, and thus we propose to update the weights accord-
ing to difficulty of distinguishing the generated virtual user-
item interaction graph based on multi-modal content and the
observed user-item interaction graph. Specifically, we collect
the outputs of the discriminator D(·) that will be described
in detail in Section III-E when inputs are generated user-
item interaction graph based on textual features Ḡtext

inter and

visual features Ḡimage
inter , respectively. Then, the output scores

are normalized with softmax operation and utilized to update
the importance score in a momentum manner:

βt = ηβt+(1−η)
exp(D(Ḡtext

inter))

exp(D(Ḡtext
inter)) + exp(D(Ḡimage

inter ))
, (16)

βi = ηβi+(1−η)
exp(D(Ḡimage

inter ))

exp(D(Ḡtext
inter)) + exp(D(Ḡimage

inter ))
, (17)

where η denotes the momentum to update βt and βi.

D. Modality-Specific Homogeneous Graph Learning
1) Message Passing on Homogeneous Graphs. Based on

the pre-constructed latent item-item relation graph of different
modalities in Section III-B and the fused features of user-
s/items in Section III-C, we utilize a light-weighted GCN
[6] for information propagation and aggregation on Ǧtext

i−i and
Ǧimage
i−i [24]. Specifically, the graph convolution over the item-

item relation graph is calculated as :

ĥm
l (a) =

∑
b∈Na

Ǧm
i−i(a, b)ĥ

m
l−1(b), (18)

where ĥm
l (a) denotes the representation of a-th item from the

l-th layer, while ĥm
l−1(b) denotes the representation of b-th item

from the l−1-th layer. N (a) denotes the neighbor items of a-th
item. Ǧm

i−i is the adjacency matrix of Ǧm
i−i. Note that ĥm

0 (a) =
ea, which is the fused embedding obtained by SAHGL in
Section III-C. After stacking Li−i convolutional layers on the
item-item graphs, we then obtain the representations of items
after modality-specific message passing ĥm = ĥm

Li−i
.

As neighbors with a higher number of commonly interacted
items should have a larger effect on the user, the graph
attention is designed for message passing on the user-user co-
occurrence graph Gu−u:

ẑl(a) =
∑
b∈Na

exp(G̃u−u(a, b))∑
c∈Na

exp(G̃u−u(a, c))
ẑl−1(b), (19)

where ẑl(a) denotes the representation of a-th user from the
l-th layer, while ẑl−1(b) denotes the representation of b-th
user from the l − 1-th layer. Na denotes the neighbor users
of a-th user. G̃u−u is the adjacency matrix of G̃u−u. After
stacking Lu−u attention layers on the user-user graph, we
then obtain final representations of users after message passing
ĕu = ẑLu−u

.
2) Dependency-aware Information Fusion. To capture the

correlations of items’ representations extracted from modality-
specific item-item relation graph, we employ a multi-head self-
attention mechanism [29] along with mean-pooling to fuse the
information aware of the modality dependency:

êmi =
∑

m′∈M ||Hhead=1 σ(
emi WQ

head·(e
m′
i WK

head)
T

√
d/H

) · em′

i , (20)

ĕi =
1

|M|
∑

m∈M
êmi , (21)

where H denotes the number of attention heads, σ(·) denotes
the softmax function. WQ

head,W
K
head ∈ Rd×d/H denote the

head-th transformation matrix for query and key, respectively.



E. Optimization

1) Training Objectives. To optimize the recommendation
model, we opt for a multi-task training scheme as followed.

i) Adversarial Loss for Learning Interaction-related Multi-
modal Content. As the raw multi-modal content of items may
contain irrelevant features than couldn’t reflect the charac-
teristics of items, we employ an adversarial self-supervised
learning task to obtain the interaction-related modality content
[10]. Specifically, the virtual interaction graph represented in
the matrix form Ḡm

inter is constructed by the transformed
multi-modal features xm

u , xm
i :

Ḡm
inter =

xm
u · (xm

i )T

||xm
u ||2 · ||xm

i ||2
. (22)

Instead of taking the observed user-item interaction graph, the
objective graph for reconstruction is augmented by Gumbel-
Softmax [30] and the auxiliary signals with the final user and
item embeddings ĕu and ĕi:

Gaug
inter(a, b) =

exp((Ginter(a, b) + g)/τ)∑
b′ exp((Ginter(a, b′) + g)/τ)

+ γ ·ϕ, (23)

ϕ =
ĕuĕi

||ĕu||2||ĕi||2
, (24)

g = −log(−log(uni)), uni ∼ Uniform(0, 1), (25)

where τ is the temperature factor and γ is a weight pa-
rameter to control the auxiliary signals. With the Gumbel-
based transformation [30], we obtain the objective user-
item graph Gaug

inter. An auxiliary discriminator D(x) =
sigmoid(Drop(BN(LeakyReLU(Linear(x))))) is intro-
duced to distinguish Gaug

inter and Ḡm
inter, and the optimization

loss is defined as follows:

Ladv = EGaug
inter

[D(Gaug
inter)]−EḠm

inter
[D(Ḡm

inter)]+ ξ ·p, (26)

p = EG∗
inter

[(||∇D(G∗
inter)

|| − 1)2], (27)

where G∗
inter denotes the interpolation of Gaug

inter and
Ḡm
inter, and p denotes the gradient penalty introduced from

WassersteinGAN-GP [31] with weight ξ.
ii) Contrastive Loss for Learning Diverse Modality-specific

User Preferences. The InfoNCE loss [32] is employed to
maximize the mutual information between the modality-aware
user embeddings xm

u and the final user embeddings ĕu:

Lcontr = −
∑

m∈M

∑
u∈U

log
exp s(ĕu, x

m
u )

den
, (28)

den =
∑
u′∈U

(exp s(ĕu′ , xm
u ) + exp s(emu′ , xm

u )), (29)

where s denotes the cosine similarity function.
iii) Knowledge Graph Representation Loss for Learning the

Triplet Semantics. Since we introduce the external KGs, we
follow TransR [33] to encourage the discrimination of valid
and broken triplets in KGs through a pairwise ranking loss:

LKG =
∑

(h,r,tp,tn)∈κ −ln sigmoid(sc(h, r, tp)− sc(h, r, tn))), (30)

sc(h, r, t) = −||Wreh + er −Wret||22, (31)

where κ = {(h, r, tp, tn)|(h, r, tp) ∈ Gknow, (h, r, tn) /∈
Gknow}, and Wr is the transformation matrix of relation r.

iv) Multi-task Training. By integrating the side information-
aware heterogeneous graph learning and modality-specific ho-
mogeneous graph learning components together, the training
for recommendation is implemented by optimizing multiple
objectives jointly:

LRec = LBPR+λadvLadv +λcontrLcontr +λreg||θ||2, (32)

LBPR =
∑

(u,ip,in)

−log(sigmoid(ŷu,ip − ŷu,in)), (33)

where (u, ip, in) denotes a triplet comprised of user, positive
item and negative item, λadv , λcontr and λreg control the
weights of different loss terms.

We optimize LKG and LRec alternatively during a training
step to improve the knowledge graph representations and
recommendation performance.

2) Time Complexity Analysis. The time cost mainly comes
from the following parts. i) For calculating adversarial loss,
it takes O(|I|

∑
m∈M dmd), O(|M|B|I|d) and O(B|I|) for

generating interaction-related multi-modal content, construct-
ing user-item interaction graph based on transformed features
and discriminating by D(·), where B represents the training
batch size. ii) For calculating the contrastive loss, it takes
O(|M||U|Bd). iii) The KG representation loss and BPR loss
require O(B(dknow)2) and O(Bd), respectively.

F. Inference Procedure

Our Firzen framework can be seamlessly applied to both
warm-start and strict cold-start items during the inference
phase. The only difference between training and inference
procedure is an extra mask Mm

i−i to isolate information prop-
agation from strict cold-start items to warm-start items:

Mm
i−i(a, b) =

{
0, if a ∈ Iwarm and b ∈ Icold
1, otherwise.

(34)

The modality-specific item-item relation graph is rectified as:

Ĝm
i−i = G̃m

i−i ⊙Mm
i−i, (35)

where the ⊙ denotes the element-wise product of two matrices.

G. Implementation Details

We implement Firzen using Pytorch 1.13.1 and train on a
64-bit Linux server equipped with 48 Intel Xeon@2.20GHz
CPUs, 256GB memory, and 4 TITAN Xp GPUs. We choose
64 as the embedding dimension. The batch size is set to 2048.
We choose the Adam optimizer [34] to train for 300 epochs
and perform early stopping.



IV. EXPERIMENTS

To evaluate the performance of our proposed Firzen frame-
work, we conduct extensive experiments to answer the follow-
ing research questions:

• RQ1 Whether Firzen outperforms the existing methods
on both strict cold-start and warm-start recommendation?

• RQ2 How does each component of Firzen contribute?
• RQ3 How do the hyperparameters influence?
• RQ4 How effective is Firzen in alleviating KG noise

issues for recommendation?
• RQ5 How effective is Firzen transferred to normal cold-

start item recommendation?
• RQ6 How are the training and inference time affected?
• RQ7 How to explain the interpretability of Firzen?
• RQ8 Where do the improvements of Firzen come from?

A. Experimental Setup

1) Datasets: We use three publicly available recommen-
dation datasets from Amazon1 and a real-world industrial
dataset Weixin-Sports collected from Weixin Channels. We
rearrange them to build four unified strict cold-start evaluation
benchmarks for models utilizing different side information.

Amazon: This dataset comprises reviews, product descrip-
tions, and images of various product categories [35], [36]. We
consider three categories of products and obtain Beauty, Cell
Phones and Clothing subsets. Each review rating is considered
a positive user-item interaction. We preprocess the raw data
by applying a 5-core filter on users and the statistics is
presented in Table I. Visual information is represented using
4,096-dimensional features [37], and textual information is
extracted using Sentence-Transformers [38], resulting in 384-
dimensional sentence embeddings. In each dataset, 20% of
the items are randomly chosen as cold-start items, which are
further split into cold validation and testing sets in a 1:1
ratio. The remaining items are divided into training, warm
validation, and warm testing sets with an 8:1:1 ratio [39]. KGs
are constructed for each subset [12] with 4 entity types and 6
relation types. The descriptions of each entity and relation
are provided in Fig. 5. Feature entities from review data
are preprocessed using TF-IDF to eliminate less meaningful
words, retaining words with a frequency between 10 and 1,000
and a TF-IDF [40] score > 0.1.

Weixin-Sports: The dataset consists of interaction data
between users and sports-related micro-videos collected from
Weixin Channels. User information is anonymized, retaining
only anonymous IDs and relevant interaction samples. The
dataset is split into training and evaluation sets, with all
evaluation set users seen in the training set. Cold-start items
in the evaluation set are separated into cold validation and
testing sets in a 1:1 ratio, while a similar process is applied
to warm-start items to create warm validation and testing sets.
Preprocessing involves applying a 5-core filter to users and
the statistics is presented in Table I. The dataset includes
pre-extracted 64-dimensional multi-modal embeddings for the

1http://jmcauley.ucsd.edu/data/amazon/links.html

TABLE I
STATISTICS OF EXPERIMENTED DATASETS WITH CONSTRUCTED

COLLABORATIVE KNOWLEDGE GRAPHS.

Dataset Beauty Cell Phones Clothing Weixin-Sports
#Users 22,363 27,879 39,387 336,466
#Items 12,101 10,429 23,033 91,086

#Warm-start items 9,680 8,343 18,426 72,764
#Strict cold-start items 2,421 2,086 4,607 18,322

#Interactions 198,502 194,439 278,677 4,222,715
#Avg. Inter. of Users 8.876 6.974 7.075 12.550
#Avg. Inter. of Items 16.404 18.644 12.099 46.360

Sparsity 99.927% 99.933% 99.969% 99.986%
#Entities 748,114 702,194 3,012,459 1,612,249

#Relations 7 7 7 227
#Triplets 11,026,137 6,210,457 46,954,412 2,575,302

Item D

Item C

Item ECategory A

Item B

Brand AItem AFeature A

Feature B

Described by

Produced by

Belong to

Also bought

Also viewed

Bought together

Relations

Entities                            Descriptions
Item                        Product to be recommended to users
Feature                   A product feature word from reviews
Brand                     Brand or manufacturer of the product
Category                Category of the product

Fig. 5. Illustration of the constructed knowledge graphs for Amazon datasets.

micro-videos. These micro-videos are linked to entities in
a pre-built KG WikiSports through text matching between
micro-video titles and entity names. The resulting KG for
Weixin-Sports is constructed from the one-hop subgraph.
Notably, WikiSports entities are closely related to sports,
minimizing noisy knowledge and ensuring high-quality data.

2) Setup and Evaluation Metrics: We use the all-ranking
protocol instead of the negative-sampling protocol to compute
the evaluation metrics for recommendation performance com-
parison. In the warm-start recommendation setting, all warm-
start items that have not been interacted by the given user are
regarded as candidate items. In the cold-start recommendation
setting, all cold-start items are regarded as candidate items. We
use the commonly used metrics for Top-K recommendation
performance Recall (R), Mean Reciprocal Ranking (M), Nor-
malized Discounted Cumulative Gain (N), Hit Ratio (H) and
Precision (P) at K=20. Moreover, we evaluate recommendation
models with a metric aiming to balance performance between
cold-start and warm-start using a harmonic mean of metrics
in two settings, which equally weighs the importance of
strict cold-start and warm-start recommendation, and penalizes
models with a short barrel.

3) Base Models: We consider five categories of recom-
mendation models, including: (i) general CF recommendation
models (CF): BPR [5], LightGCN [6], SGL [41], SimpleX
[42], (ii) knowledge-aware recommendation models (KG):
CKE [43], KGAT [11], KGCN [44], KGNNLS [45], (iii)
multi-modal recommendation models (MM): VBPR [46],
DRAGON [25], BM3 [9], MMSSL [10], (iv) cold-start rec-
ommendation models: DropoutNet [21], CLCRec [39] and (v)



TABLE II
THE STRICT COLD-START AND WARM-START ITEM RECOMMENDATION PERFORMANCE COMPARISON RESULTS ON AMAZON DATASETS. ’HM’

REPRESENTS THE HARMONIC MEAN OF METRICS IN TWO SCENARIOS. THE BOLD AND THE UNDERLINE SHOW THE BEST AND SECOND-BEST RESULTS
WITHIN ALL COMPARISON METHODS, RESPECTIVELY. ALL THE NUMBERS IN THE TABLE ARE PERCENTAGE NUMBERS WITH ’%’ OMITTED.

Setting Type Method Beauty Cell Phones Clothing
R@20 M@20 N@20 H@20 P@20 R@20 M@20 N@20 H@20 P@20 R@20 M@20 N@20 H@20 P@20

Cold

CF

BPR [5] 0.94 0.19 0.33 1.17 0.06 0.94 0.21 0.35 1.11 0.06 0.42 0.08 0.15 0.51 0.03
LightGCN [6] 0.77 0.14 0.27 0.97 0.05 1.12 0.18 0.37 1.30 0.07 0.46 0.10 0.17 0.55 0.03

SGL [41] 0.93 0.21 0.35 1.12 0.06 0.79 0.13 0.26 0.89 0.04 0.42 0.11 0.17 0.51 0.03
SimpleX [42] 0.70 0.15 0.25 0.87 0.04 1.01 0.16 0.33 1.15 0.06 0.44 0.08 0.16 0.51 0.03

KG

CKE [43] 2.07 0.48 0.78 2.73 0.41 1.58 0.31 0.55 1.83 0.09 0.41 0.11 0.16 0.51 0.03
KGAT [11] 12.74 4.10 5.71 14.68 0.79 10.43 3.06 4.44 11.95 0.63 4.83 1.31 1.99 5.52 0.29
KGCN [44] 1.50 0.36 0.59 1.79 0.09 1.95 0.47 0.74 2.28 0.11 0.80 0.22 0.33 0.98 0.05

KGNNLS [45] 1.71 0.40 0.66 2.02 0.10 1.97 0.47 0.74 2.29 0.11 0.80 0.22 0.33 0.98 0.05

MM

VBPR [46] 6.42 2.57 3.23 7.76 0.41 4.33 1.42 1.98 5.02 0.25 4.03 1.34 1.86 4.67 0.24
DRAGON [25] 1.94 0.54 0.79 2.30 0.12 0.83 0.16 0.30 1.03 0.05 0.55 0.11 0.20 0.65 0.03

BM3 [9] 0.86 0.19 0.32 1.02 0.05 1.28 0.28 0.49 1.44 0.07 0.44 0.10 0.17 0.58 0.03
MMSSL [10] 0.67 0.20 0.28 0.89 0.04 1.12 0.20 0.38 1.32 0.07 0.52 0.08 0.17 0.60 0.03

CS DropoutNet [21] 4.85 1.54 2.15 5.92 0.31 3.23 0.68 1.18 3.65 0.19 2.15 0.53 0.86 2.51 0.13
CLCRec [39] 2.62 0.59 0.99 3.16 0.16 1.97 0.47 0.77 2.24 0.11 2.27 0.65 0.96 2.66 0.14

MM+KG MKGAT [20] 11.58 3.59 5.08 13.46 0.71 4.61 1.17 1.84 5.39 0.03 2.59 0.74 1.09 3.11 0.16
Firzen (Ours) 13.65 5.00 6.54 15.83 0.85 11.97 3.38 5.08 13.44 0.70 8.15 2.63 3.64 9.39 0.49

Warm

CF

BPR [5] 10.77 4.87 5.57 14.70 0.89 12.34 4.99 6.14 15.36 0.83 3.36 1.38 1.67 4.34 0.23
LightGCN [6] 13.20 6.24 6.96 17.84 1.08 16.46 6.71 8.25 20.28 1.10 5.88 2.36 2.88 7.55 0.40

SGL [41] 14.56 6.59 7.53 19.56 1.18 16.91 6.92 8.51 20.79 1.12 6.42 2.56 3.13 8.34 0.44
SimpleX [42] 13.00 5.42 6.49 17.54 1.04 15.73 5.71 7.41 19.45 1.05 5.34 1.79 2.39 6.89 0.36

KG

CKE [43] 10.71 4.93 5.63 14.63 0.89 12.00 4.78 5.94 14.96 0.81 3.08 1.24 1.51 3.98 0.21
KGAT [11] 11.29 4.65 5.53 15.47 0.92 11.84 4.19 5.46 14.88 0.80 4.06 1.32 1.79 5.27 0.27
KGCN [44] 8.88 3.64 4.35 12.39 0.75 10.37 3.66 4.79 13.08 0.70 2.25 0.79 1.03 2.96 0.15

KGNNLS [45] 8.98 3.63 4.38 12.48 0.76 10.37 3.66 4.79 13.08 0.70 2.26 0.79 1.03 2.96 0.16

MM

VBPR [46] 8.95 3.87 4.51 12.69 0.76 8.91 3.16 4.10 11.31 0.61 2.84 1.00 1.28 3.82 0.20
DRAGON [25] 9.39 3.52 4.41 12.87 0.74 9.29 2.94 4.03 11.81 0.63 4.11 1.30 1.78 5.42 0.28

BM3 [9] 13.49 5.82 6.81 18.12 1.05 16.48 6.61 8.21 20.16 1.09 6.87 2.66 3.30 8.87 0.46
MMSSL [10] 14.30 6.60 7.51 19.28 1.20 16.82 6.77 8.34 20.76 1.12 6.59 2.58 3.17 8.56 0.45

CS DropoutNet [21] 10.01 4.07 4.86 14.00 0.81 12.38 4.54 5.80 15.49 0.82 4.46 1.61 2.06 5.87 0.31
CLCRec [39] 3.39 1.10 1.47 4.79 0.25 4.27 1.26 1.79 5.46 0.28 0.82 0.24 0.34 1.09 0.06

MM+KG MKGAT [20] 11.08 4.73 5.54 15.13 0.90 11.40 3.92 5.19 14.35 0.76 3.66 1.26 1.65 4.75 0.24
Firzen (Ours) 14.31 6.84 7.67 19.32 1.19 16.75 6.93 8.44 20.56 1.11 7.21 2.86 3.51 9.21 0.49

HM

CF

BPR [5] 1.73 0.37 0.62 2.17 0.11 1.75 0.40 0.66 2.07 0.11 0.75 0.15 0.28 0.91 0.32
LightGCN [6] 1.46 0.27 0.52 1.84 0.10 2.10 0.35 0.71 2.44 0.13 0.85 0.19 0.32 1.03 0.06

SGL [41] 1.75 0.41 0.67 2.12 0.11 1.51 0.26 0.50 1.71 0.08 0.79 0.21 0.32 0.96 0.06
SimpleX [42] 1.33 0.29 0.48 1.66 0.08 1.90 0.31 0.63 2.17 0.11 0.81 0.15 0.30 0.95 0.06

KG

CKE [43] 3.47 0.87 1.37 4.60 0.24 2.79 0.58 1.01 3.26 0.16 0.72 0.20 0.29 0.90 0.05
KGAT [11] 11.97 4.36 5.62 15.06 0.85 11.09 3.54 4.90 13.26 0.70 4.41 1.31 1.88 5.39 0.28
KGCN [44] 2.57 0.66 1.04 3.13 0.16 3.28 0.83 1.28 3.88 0.19 1.18 0.34 0.50 1.47 0.08

KGNNLS [45] 2.87 0.72 1.15 3.48 0.18 3.31 0.83 1.28 3.90 0.19 1.18 0.34 0.50 1.47 0.08

MM

VBPR [46] 7.48 3.09 3.76 9.63 0.53 5.83 1.96 2.67 6.95 0.35 3.33 1.15 1.52 4.20 0.22
DRAGON [25] 3.22 0.94 1.34 3.90 0.21 1.52 0.30 0.56 1.89 0.09 0.97 0.20 0.36 1.16 0.05

BM3 [9] 1.62 0.37 0.61 1.93 0.10 2.38 0.54 0.92 2.69 0.13 0.83 0.19 0.32 1.09 0.06
MMSSL [10] 1.28 0.39 0.54 1.70 0.08 2.10 0.39 0.73 2.48 0.13 0.96 0.16 0.32 1.12 0.06

CS DropoutNet [21] 6.53 2.23 2.98 8.32 0.45 5.12 1.18 1.96 5.91 0.31 2.90 0.80 1.21 3.52 0.18
CLCRec [39] 2.45 0.88 1.09 3.83 0.20 2.70 0.68 1.08 3.18 0.16 1.20 0.35 0.50 1.55 0.08

MM+KG MKGAT [20] 9.40 4.20 4.76 13.48 0.81 6.57 1.80 2.72 7.84 0.05 3.03 0.93 1.31 3.76 0.19
Firzen (Ours) 13.97 5.78 7.06 17.40 0.99 13.96 4.54 6.34 16.25 0.86 7.65 2.74 3.57 9.30 0.49

recommendation models based on both multi-modal content
and KGs (MM+KG): MKGAT [20]. We implement all CS
models based on LightGCN and use multi-modal content of
items as side information for a fair comparison.

B. Experimental Results: RQ1
Table II and Table III provide the performance comparison

results of different methods on Amazon datasets and Weixin-
Sports dataset, respectively.

1) Main Results: Firzen consistently improves strict cold-
start scenarios and competes with state-of-the-art methods in
warm-start scenarios. This validates the effectiveness of com-
bining multiple sources of item information (visual, textual,
and KGs) to balance performance. The diversity of evaluation
datasets varies by recommendation domains, sparsity degrees
and data scale, justifying the generality and flexibility of
Firzen. The improvements are primarily due to two factors:
i) SAGHL, enabling warm-start items to capture behavior-
aware, modality-aware, and knowledge-aware collaborative
signals, while strict cold-start items can capture interaction-
related item-wise semantics through transformed multi-modal

content and KG representation, ii) MSHGL, which transfers
collaborative signals based on internal semantic structure,
particularly from warm-start to strict cold-start items.

2) Performance Comparison with KG and MM Models:
Compared to CF methods, most knowledge-aware and multi-
modal models outperform CF in either warm-start or strict
cold-start scenarios, demonstrating the value of incorporating
multi-modal content and knowledge graphs to address sparsity.
KGAT excels in strict cold-start recommendations by using
external semantic knowledge to encode item-wise structures,
while MMSSL performs well in warm-start scenarios by mod-
eling modality-specific user preferences and item characteris-
tics. However, KGAT underperforms in warm-start situations
due to potential unrelated external knowledge, and MMSSL
struggles with strict cold-start item recommendations, as it
relies on a complete user-item interaction graph, making it
challenging to generate reasonable embeddings for new items.

3) Performance Comparison with CS Models: Table II
shows that cold-start models incorporating additional content-
based representations bring a significant improvement in strict



TABLE III
THE STRICT COLD-START AND WARM-START ITEM RECOMMENDATION

PERFORMANCE COMPARISON RESULTS ON WEIXIN-SPORTS.

Setting Type Method R@20 M@20 N@20 H@20 P@20

Cold

CF

BPR [5] 0.01 0.00 0.00 0.02 0.00
LightGCN [6] 0.01 0.00 0.00 0.02 0.00

SGL [41] 0.00 0.00 0.00 0.01 0.00
SimpleX [42] 0.00 0.00 0.00 0.00 0.00

KG

CKE [43] 0.01 0.00 0.00 0.01 0.00
KGAT [11] 0.03 0.01 0.01 0.04 0.00
KGCN [44] 0.01 0.00 0.00 0.02 0.00

KGNNLS [45] 0.01 0.00 0.00 0.02 0.00

MM

VBPR [46] 0.40 0.11 0.16 0.06 0.03
DRAGON [25] 0.08 0.04 0.04 0.15 0.01

BM3 [9] 0.02 0.00 0.01 0.02 0.00
MMSSL [10] 0.03 0.01 0.01 0.04 0.00

CS DropoutNet [21] 0.08 0.02 0.03 1.13 0.01
CLCRec [39] 0.05 0.01 0.02 0.08 0.00

MM+KG MKGAT [20] 0.01 0.00 0.00 0.01 0.00
Firzen (Ours) 0.48 0.17 0.21 0.74 0.04

Warm

CF

BPR [5] 31.54 19.61 18.67 48.71 3.15
LightGCN [6] 39.63 24.10 23.65 57.79 3.85

SGL [41] 38.33 25.28 24.39 55.61 3.62
SimpleX [42] 23.73 13.30 13.22 38.25 2.32

KG

CKE [43] 36.06 20.75 20.63 53.81 3.51
KGAT [11] 36.82 22.78 22.19 54.61 3.57
KGCN [44] 30.73 16.23 16.61 46.47 2.90

KGNNLS [45] 30.73 16.25 16.63 46.48 2.91

MM

VBPR [46] 35.82 21.12 21.03 53.05 3.42
DRAGON [25] 4.92 2.46 2.43 9.73 0.53

BM3 [9] 35.11 24.05 22.42 52.72 3.39
MMSSL [10] 50.72 36.75 34.80 69.10 5.01

CS DropoutNet [21] 37.79 22.83 22.29 55.88 3.68
CLCRec [39] 18.35 11.38 11.05 27.15 1.53

MM+KG MKGAT [20] 34.84 21.31 20.65 52.42 3.39
Firzen (Ours) 42.02 30.12 28.26 60.38 4.03

HM

CF

BPR [5] 0.02 0.00 0.00 0.04 0.00
LightGCN [6] 0.02 0.00 0.00 0.04 0.00

SGL [41] 0.00 0.00 0.00 0.02 0.00
SimpleX [42] 0.00 0.00 0.00 0.00 0.00

KG

CKE [43] 0.02 0.00 0.00 0.02 0.00
KGAT [11] 0.06 0.02 0.02 0.08 0.00
KGCN [44] 0.02 0.00 0.00 0.04 0.00

KGNNLS [45] 0.02 0.00 0.00 0.04 0.00

MM

VBPR [46] 0.79 0.22 0.32 0.12 0.06
DRAGON [25] 0.16 0.08 0.08 0.30 0.02

BM3 [9] 0.04 0.00 0.02 0.04 0.00
MMSSL [10] 0.06 0.02 0.02 0.08 0.00

CS DropoutNet [21] 0.16 0.04 0.06 0.26 0.02
CLCRec [39] 0.10 0.02 0.04 0.16 0.00

MM+KG MKGAT [20] 0.02 0.00 0.00 0.02 0.00
Firzen (Ours) 0.95 0.34 0.42 1.46 0.08

cold-start but hurt the warm-start ones compared to the back-
bone LightGCN. The reason is that these models attempt to
produce compromise representations for strict cold-start with
no interaction records and warm-start items with sufficient
ones. Instead of representing strict cold-start and warm-start
items with behavioral and content features respectively, our
Firzen bridges the gap via extracting interaction-related con-
tent features to enhance behavior representations of warm-start
items, while propagates behavioral features to enhance content
representations of strict cold-start ones.

4) Performance Comparison with MM+KG Models: Inte-
grating multi-modal content represented as nodes into KGs,
MKGAT suffers from the performance degradation, as the
number of multi-modal content is much lower than that of
entities in KG, making it difficult to propagate sufficient and
effective information to item and user nodes. Different from
MKGAT, our Firzen effectively collaborates the multi-modal
content and KGs from two aspects: i) The interaction-related
content including multi-modal content and knowledge-aware
item representation are independently extracted and fused in
an importance-aware manner; ii) The modality-aware latent

TABLE IV
ABLATION STUDY OF DIFFERENT COMPONENTS.

BA KA MA MS Setting R@20 M@20 N@20 H@20 P@20

✓ ✓ ✓
Cold 3.31 0.86 1.35 3.93 0.20
Warm 14.27 6.72 7.59 19.32 1.18
HM 5.37 1.52 2.29 6.53 0.34

✓ ✓ ✓
Cold 12.93 4.77 6.23 14.93 0.80
Warm 14.29 6.93 7.71 19.21 1.18
HM 13.58 5.65 6.89 16.80 0.95

✓ ✓ ✓
Cold 11.63 4.36 5.63 13.61 0.73
Warm 14.38 6.75 7.62 19.42 1.18
HM 12.86 5.30 6.48 16.00 0.90

✓ ✓ ✓
Cold 12.35 4.37 5.82 14.29 0.76
Warm 13.13 5.49 6.50 17.91 1.07
HM 12.73 4.87 6.14 15.90 0.89

✓ ✓ ✓ ✓
Cold 13.65 5.00 6.54 15.83 0.85
Warm 14.31 6.84 7.67 19.32 1.19
HM 13.97 5.78 7.06 17.40 0.99

structure is mined to transfer the interaction-related content
including knowledge-aware item representation.

C. Ablation Study: RQ2

We perform an ablation study on the dataset Beauty to
evaluate the effectiveness of different components in Firzen
on the recommendation performance. Specifically, we consider
the following variants: (1) w/o MS: Removing MSHGL, (2)
w/o MA: Removing modality-aware graph convolution, (3)
w/o KA: Removing knowledge-aware graph attention, and (4)
w/o BA: Removing behavior-aware graph convolution.

As shown in Table IV, Firzen performs best among all the
comparison methods on HM of metrics in strict cold-start
and warm-start scenarios, which shows that the removal of
any components from Firzen will hurt the final performance.
The effectiveness of MS is significant, which reflects that
the information propagation and aggregation from warm-start
items to cold-start items is the foundation for warming up the
latter. Removing MA and KA both decrease the performance
on cold-start scenario, but have no significant influence on
warm-start scenario. This reflects that multi-modal content
and KGs have complementary information to characterize the
items in a relatively comprehensive manner. We also find
that Firzen without BA performs worse both on cold-start
and warm-start scenarios. The above two observations show
that items’ side information can be beneficial for cold-start
recommendation, while that could also impair the quality
of item representation from two aspects. On the hand, di-
rectly utilizing multi-modal content or KG representations will
inevitably bring noise in preserving key semantic of items
related to the recommendation task. On the other hand, the
information fusion of multi-modal content and KG content
is easily towards over-smoothed, since the overwhelming
information can make the collaborative embeddings of items
blurred [47]. For instance, two movies share the visually
similar posters but the user only prefers one of them as he
appreciates the film’s director, then the final representations
of two items are blurrier. Our method is less sensitive to the
interaction-unrelated content as behavior-aware user and item
representations are incorporated to model the collaborative
signals directly from the interactions.
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Fig. 6. Performance with different hyperparameters.

D. Parameter Sensitivity: RQ3

We investigate the sensitivity of the fusing weight
of knowledge-aware user/item representations λk, that of
modality-aware user/item representations λm, and the mo-
mentum to control the update of modality importance η in
SAHGL on Firzen performance. Moreover, different number
of neighbors per item K for MSHGL is investigated.

1) Hyperparameters λk and λm: We first vary the value
of λk in {0.18, 0.36, 0.54. 0.72} with λm set to 1.10, then
vary the value of λm in {0.55, 1.10, 1.65, 2.20} with λk set
to 0.36. The curves of λk and λm are shown in Fig. 6
(a) and (b), respectively, from which we observe that the
performance in strict cold-start scenario increases first with
the increasing of λk and λm, and decreases when λk is
over 0.36 or λm is over 1.10, showing the benefit of fusing
side information and collaborative signals in a proper ratio.
However, the performance in warm-start scenario decreases
with the increasing of λk and λm, as unrelated multi-modal
content or entities in KGs may blur the final representations.

2) Momentum η and Neighbor Number K: We vary the
value of η in {0.9, 0.99, 0.999, 0.9999} while the value of K
is chosen from {5, 10, 15, 20}. The curves of η and K are
shown in Fig. 6 (c) and (d), respectively. We can see that the
model performance is insensitive to changes in η. We observe
the strict cold-start performance degradation with the increase
of K, which shows the over-connection of homogeneous
graph could result in improper information propagation from
warm-start to strict cold-start items. Representations of strict
cold-start items are sensitive to the potential association with
warm-start neighbors, and thus even small noise or relatively
improper connection can have a serious negative impact on
their final representations.

E. Robustness Analysis: RQ4

We conduct experiments to illustrate the proposed model’s
robustness to outliers, duplicates or discrepancies in entities
within the KG. Specifically, we inject 20% noisy triplets to

TABLE V
PERFORMANCE IN ALLEVIATING KG NOISE. ’AVG. DEC.’ REPRESENTS
THE PERFORMANCE DEGRADATION PERCENTAGE IN TERMS OF M@20.

Setting Type Method Outlier Duplicate Discrepancy
M@20 Avg.Dec ↓ M@20 Avg.Dec ↓ M@20 Avg.Dec ↓

Cold
KG

CKE [43] 0.24 50.00 0.25 47.92 0.30 37.50
KGAT [11] 0.14 96.59 0.18 95.61 0.40 90.24
KGCN [44] 0.22 38.89 0.13 63.89 0.15 58.33

KGNNLS [45] 0.22 45.00 0.13 67.50 0.15 62.50

MM+KG MKGAT [20] 0.24 93.31 0.22 93.87 0.24 93.31
Firzen (Ours) 2.81 43.80 2.86 42.80 2.69 46.20

Warm
KG

CKE [43] 4.65 5.68 4.81 2.43 4.73 4.06
KGAT [11] 3.72 20.00 3.77 18.92 4.09 12.04
KGCN [44] 3.63 0.27 3.64 0.00 3.50 3.58

KGNNLS [45] 3.63 0.00 3.64 -0.28 3.50 3.58

MM+KG MKGAT [20] 3.69 21.99 4.33 8.46 3.99 15.64
Firzen (Ours) 6.28 8.19 6.38 6.73 6.23 8.92

HM
KG

CKE [43] 0.46 47.13 0.48 51.72 0.56 48.28
KGAT [11] 0.27 93.81 0.34 92.20 0.73 83.26
KGCN [44] 0.41 37.88 0.25 62.12 0.29 56.06

KGNNLS [45] 0.41 43.06 0.25 65.28 0.29 59.72

MM+KG MKGAT [20] 0.45 89.29 0.42 90.00 0.45 89.29
Firzen (Ours) 3.88 32.87 3.95 31.66 3.76 34.95

TABLE VI
THE NORMAL COLD-START ITEM RECOMMENDATION PERFORMANCE.

Type Method R@20 M@20 N@20 H@20 P@20

CF

BPR [5] 1.03 0.20 0.38 1.05 0.05
LightGCN [6] 10.35 3.93 5.24 11.21 0.58

SGL [41] 9.68 3.47 4.77 10.36 0.52
SimpleX [42] 0.70 0.15 0.25 0.87 0.04

KG

CKE [43] 2.19 0.33 0.71 2.48 0.12
KGAT [11] 10.85 3.31 4.81 11.71 0.60
KGCN [44] 1.47 0.33 0.56 1.66 0.08

KGNNLS [45] 1.53 0.36 0.60 1.70 0.08

MM

VBPR [46] 6.19 2.36 3.08 6.79 0.34
DRAGON [25] 8.02 2.19 3.33 8.79 0.45

BM3 [9] 6.77 2.14 3.10 7.27 0.37
MMSSL [10] 9.73 3.46 4.78 10.46 0.54

CS DropoutNet [21] 4.62 1.16 1.84 5.16 0.26
CLCRec [39] 2.21 0.56 0.89 2.41 0.12

MM+KG MKGAT [20] 11.19 3.39 4.98 12.09 0.62
Firzen (Ours) 13.40 4.70 6.45 14.36 0.74

the constructed KG in three forms, respectively: (1) outliers:
triplets with non-existent tail entities (e.g., new brands or
categories), (2) duplicates: triplets same with existing ones,
(3) discrepancies: triplets with existing but invalid tail entities
(e.g., incorrect brands or categories). The experimental results
on the noisy KG are reported in Table V. Despite the KG noise,
Firzen still achieves the best performance on M@20 when
competing with state-of-the-art knowledge-aware recommen-
dation models, in distilling the interaction-related information
from noisy KG to assist the modeling of user preference
and item characteristics. Additionally, Firzen achieves lowest
average performance decreasing in alleviating KG noise,
which verifies the superiority in discovering relevant and
useful item semantics from noisy KG information.

F. Generalizability Analysis: RQ5

Though Firzen focuses on warming up strict cold-start
items, it can be seamlessly utilized to enhance the normal
cold-start item recommendation with additional user-item link
provided at the test stage. We conduct experiments to illustrate
the effectiveness of Firzen in the normal cold-start item rec-
ommendation, shown as Table VI. Specifically, we further split
the cold validation and testing sets into known and unknown
sets with the ratio of 1:1, respectively. The known set simulates
the newly added interaction data of normal cold-start items



TABLE VII
TRAINING AND INFERENCE TIME ON AMAZON BEAUTY.

BA KA VA TA Training Time (s) Inference Time Per User (ms)
Cold Warm

✓ 8124.24 11.41 51.66
✓ ✓ 29409.30 15.77 52.76
✓ ✓ ✓ 44497.11 16.04 57.56
✓ ✓ ✓ ✓ 48271.68 16.27 57.85

that can be utilized at the inference stage, while the unknown
set is used for performance comparison. We observe that
some recommendation methods incorporating the user-item
interaction graph (e.g., LightGCN, MMSSL) would obtain
performance gain compared with strict cold-start scenario. Due
to the information propagation between users and cold-start
items, Firzen can still achieve state-of-the-art performance
in normal cold-start scenario, demonstrating the effective-
ness in balancing the recommendation performance of warm-
start and cold-start (both strict and normal).

G. Training and Inference Time: RQ6

We show the training time and inference time per user
measured on 1 TITAN Xp GPU to investigate how they
are affected when integrating multiple sources of additional
information, as shown in Table VII.

Since KG representation, adversarial and contrastive loss
are introduced when integrating knowledge-aware modality
(KA), the training time relatively increases compared with
using mere behavior-aware collaborative signals (BA). Due to
the knowledge graph attention, the inference time for cold-start
increases for KA, while the modality-aware graph convolution
along with MSHGL introduced by visual modalities (VA) and
textual modality (TA) bring insignificant inference latency,
which satisfies most real-time requirements.

H. Interpretability: RQ7

We perform qualitative case study and quantitative ablation
study to explain the interpretability. (1) Case study: We first
illustrate five most similar items with the sampled item from
Amazon Beauty, to explain how the model would provide
unexpected or unsatisfied suggestions without complete con-
tent, as illustrated in Figure 7. We observe that the modality
content and KG can collaborate to balance the diversity and
relevance of recommendation. The first case shows that with
mere modality, the five most similar items are all shampoos
of the same brand. Nevertheless, taking textual content and
KG into consideration, interaction-related textual content and
external knowledge are extracted by modality-aware graph
convolution and knowledge graph attention to recommend
shampoos with more diversified brands since they all belong
to Hair Care and Shampoos. The second case shows that
with mere knowledge graph, some items irrelevant to the
brush rank first due to the inevitable KG noise. However,
the visual and textual content are utilized in modality-aware
graph convolution and modality-specific graph convolution to
constrain the relevant brushes with different appearances to

Fig. 7. Examples of relevant items ranked with mere modality content, KG
or complete content. The transparency indicates unused side information.

TABLE VIII
CONTRIBUTION OF DIFFERENT MODALITY AND KG INFORMATION.

BA KA VA TA Setting R@20 M@20 N@20 H@20 P@20

✓
Cold 0.36 0.05 0.11 0.48 0.02
Warm 12.81 5.76 6.55 17.63 1.07
HM 0.70 0.10 0.22 0.93 0.04

✓ ✓
Cold 1.70 0.41 0.66 2.10 0.11
Warm 13.20 6.22 6.95 18.13 1.10
HM 3.01 0.77 1.21 3.76 0.20

✓ ✓
Cold 7.84 2.55 3.49 9.39 0.50
Warm 12.90 5.93 6.70 17.58 1.05
HM 9.75 3.57 4.59 12.24 0.68

✓ ✓
Cold 12.04 4.22 5.64 14.02 0.75
Warm 13.55 6.30 7.10 18.31 1.10
HM 12.75 5.05 6.29 15.88 0.89

be ranked first. (2) Ablation study: We conduct experiments
to interpret the contribution of different modalities and KG
information to the final recommendations. Specifically, we
inference by gradually incorporating items’ textual features,
visual features or knowledge-aware features. We observe that
different modalities and KG information all contribute to
the performance gain. Moreover, different side information
differs in the amount of distribution. For instance, based
on the behavior-aware collaborative signals (BA), the textual
modality (TA) contributes more than visual modality (VA) and
knowledge-aware modality (KA) on Amazon Beauty, since the
items seem similar in visual content or densely connected in
KG, but are more distinctive in textual descriptions.



(a) LightGCN (b) KGAT (c) MMSSL

(d) MKGAT (e) DropoutNet (f) Firzen (Ours)

Fig. 8. t-SNE visualization of strict cold-start (blue) and warm-start (red)
item embeddings’ distribution.

I. Visualization: RQ8

Finally, we visualize the embeddings of strict cold-start and
warm-start items to illustrate the effectiveness of Firzen on
both recommendation scenarios. Specifically, we visualize the
distribution of the cold and warm item embeddings by reduc-
ing their dimension to two with t-SNE [48]. Then we compare
the distribution of the typical baselines LightGCN, KGAT,
MMSSL, MKGAT, DropoutNet and Firzen. Observing from
Fig. 8, the strict cold-start embeddings produced by LightGCN
and MMSSL are compactly distributed and significantly dif-
ferent from the warm embeddings. Thus, as reported in Table
II and III, the strict cold-start recommendation performance is
limited. For KGAT, MKGAT and DropoutNet, the distribution
of cold embeddings is relatively improved while that of warm
embeddings is affected, resulting in degraded performance in
warm-start scenario. Benefiting from propagating BA, KA and
MA features from warm-start to strict cold-start items, the cold
embeddings of Firzen have more similar distribution as the
warm embeddings, while preserving the raw distribution of
warm embeddings like LightGCN and MMSSL.

V. RELATED WORK

A. Cold-start Item Recommendation

The cold-start item recommendation problem is a long-
standing challenge in recommender systems. The main line
of research lies in the content-based approaches, which uti-
lizes side information of items to overcome the problem of
sparse data. Some works model item content directly [49].
Some works learn the correlation of id embeddings and side
information, and learn a generator to project the item content
into the warm item embedding space [50]–[55]. Another group
of works tackle the problem from the perspective of robust
learning. It treats cold-start items as warm-start items missing
interactions, and attempt to infer the warm embeddings for
them [21], [56]. For instance, DropoutNet [21] randomly
samples a subset of users/items and remove their behavior-
based features to simulate the cold-start scenario during the
training phase. Besides, some efforts use meta-learning to
address the cold-start recommendation [57], [58]. For instance,

MWUF [58] generates warm embeddings for cold-start items
based on their features and ID embeddings using meta shifting
network and meta scaling network.

B. Multi-modal Recommendation

Multi-modal recommendation aims to utilize the rich multi-
modal content information (e.g., texts, images) of items in
the recommendation. Most early multi-modal recommendation
models utilize deep learning techniques to explore users’
preferences of different modalities on top of collaborative
filtering paradigm [46], [59], [60]. Recently, another group
of research introduces GNNs into the multi-modal recommen-
dation systems to boost the performance [8], [22], [24], [61].
For example, LATTICE [22] builds and dynamically updates
item-item relation graphs, while FREEDOM [24] further finds
that the learning of item-item graphs are negligible and freezes
the item-item graph to improve the efficiency.

C. Knowledge-aware Recommendation

Knowledge-aware recommendation aims at enhance the rep-
resentations of users and items by introducing external KGs,
which can be roughly grouped into two categories: path-based
methods and embedding-based methods. Path-based methods
[11], [15], [19], [44], [62], aim to explore the potential connect
between items in KG by constructing meta-path for informa-
tion propagation. For example, MCRec [62] proposes meta-
path-based mutual attention mechanism, which produces user,
item and meta-path-based context representations. Embedding-
based methods [43], [63]–[67] integrate the representation
learning of KGs to enhance the user and item embeddings.
For instance, the embedding of items’ structural knowledge is
encoded with TransR [33] for CKE [43].

VI. CONCLUSION

In this work, we focus on the problem of building compet-
itive models for both strict cold-start and warm-start item rec-
ommendation by proposing a model collaborating multi-modal
content and KGs named Firzen. In Firzen, Side information-
Aware Heterogeneous Graph Learning augments the repre-
sentation by behavior-aware, knowledge-aware and modality-
aware user-item information propagation. Moreover, Modality-
Specific Homogeneous Graph Learning passes the message
based on potential connection among strict cold-start and
warm-start items, alleviating the strict cold-start problem while
preserving the performance of warm-start recommendation.
Extensive experiments on four benchmarks built upon Amazon
datasets and a real-world industrial dataset Weixin-Sports
verify the effectiveness of the proposed Firzen on achieving
competitive performance in both strict cold-start and warm-
start scenarios compared with existing methods.
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